Sistem Rekomendasi Tempat Parkir di Kota Lama Semarang Menggunakan Collaborative Filtering
Abstract
Utilization of information and communication technology has become an inseparable part of people's lives today. In the last few years, there have been many studies that have used information technology to solve the problems of everyday life in society. Utilizes Collaborative Filtering and Location Based Filtering methods to build a tourism recommendation system in the special area of Yogyakarta. Based on previous research, the researcher will build a parking recommendation system in the old city of Semarang using the Collaborative Filtering method. Collaborative filtering has two processes, namely the similarity calculation process and the prediction calculation. A similar calculation process is carried out to find the value between parking lots which will continue the prediction calculation process. While the estimation process is carried out to find predictions of parking spaces for visitors. The calculation process that has been carried out on Andi users gets a recommendation on parking lot I2 with the highest score of 0.565, while the lowest score is obtained by parking lot I5 with a score of -0.696.
Keywords
Full Text:
PDFReferences
Arief, A., Widyawan, & Sunafri Hantono, B. 2012. Rancang Bangun Sistem Rekomendasi Pariwisata Mobile dengan Menggunakan Metode Collaborative Filtering dan Location Based Filtering. Jnteti, 1(3). http://ejnteti.jteti.ugm.ac.id/index.php/JNTETI/article/view/129
Badriyah, T., Restuningtyas, I., & Setyorini, F. 2017. Sistem Rekomendasi Collaborative Filtering Berbasis User Algoritma Adjusted Cosine Similarity. Prosiding Seminar Nasional Sisfotek, 10(1), 38–45.
Busyro, M., & Verina, W. 2020. Perancangan Aplikasi Wisata Kuliner Menggunakan Algoritma Collaborative Filtering Dan Algoritma Fp-Growth Berbasis Android. Jurnal Mahasiswa Fakultas Teknik Dan Ilmu Komputer, 1(1), 941–954.
Ferio, G., Intan, R., & Rostianingsih, S. 2019. Sistem Rekomendasi Mata Kuliah Pilihan Menggunakan Metode User Based Collaborative Filtering Berbasis Algoritma Adjusted Cosine Similarity. Jurnal Infra, 7(1), 1–7.
Kurniawan, A. 2016. Sistem Rekomendasi Produk Sepatu dengan Menggunakan Metode Collaborative Filtering. Seminar Nasional Teknologi Informasi Dan Komunikasi, 2016 (Sentika), 2089–9815.
Larasati, F. B. A., & Februariyanti, H. 2021. Sistem Rekomendasi Product Emina Cosmetics Dengan Menggunakan Metode Content - Based Filtering. Jurnal Manajemen Informatika Dan Sistem Informasi, 4(1), 45. https://doi.org/10.36595/misi.v4i1.250
Muliadi, K. H., & Lestari, C. C. 2019. Rancang Bangun Sistem Rekomendasi Tempat Makan Menggunakan Algoritma Typicality Based Collaborative Filtering. Techno.Com, 18(4), 275–287. https://doi.org/10.33633/tc.v18i4.2515
Nasional, S., Teknologi, I., Kurniawan, D., Kasih, P., & Informatika, T. 2021. Sistem Rekomendasi Menu Paket Miklur Menggunakan Metode Content-Based Filtering dan Algoritma Apriori. 85–90.
Ningrum, A. S. N. S. 2019. Content Based Dan Collaborative Filtering Pada Rekomendasi Tujuan Pariwisata Di Daerah Yogyakarta. Telematika, 16(1), 44. https://doi.org/10.31315/telematika.v16i1.3023
Telaumbanua, K., Gulo, F., & Gulo, A. S. 2018. Sistem Rekomendasi Pariwisata Pulau Nias Menggunakan Algoritma Neighbordhood - Based Collaborative Filtering. Seminar Nasional Teknologi Informasi Dan Komunikasi, 730–735.
Wiranto. & Winarko, E. 2010. Konsep Multicriteria Collaborative Filtering untuk Perbaikan Rekomendasi. Seminar Nasional informatika, D95-D101.
DOI: http://dx.doi.org/10.33087/jiubj.v22i2.2066
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
|