Implementasi Algoritma YOLO (You Only Look Once) Untuk Deteksi Rias Adat Nusantara

Zuanita Syifaul Jannah, Felix Andreas Sutanto

Abstract


Makeup and fashion are important things that need to be considered by the future bride and groom. Traditional bridal makeup and dress in Indonesia have certain meanings and symbols according to the region and beliefs of their ancestors. In general, the meaning of the symbol is prayers and hopes that the home life to be lived will always be endowed with happiness and well-being. One way to distinguish the types of traditional makeup can be observed through the form of makeup on the face, the order and accessories used on the bride's hair. Current technological developments can be used for the introduction of customary types of makeup, namely through object detection by applying machine learning algorithms, one of which is YOLO (You Only Look Once). In this study, we will use yolo version 4 Tiny (YOLOv4-Tiny) as an algorithm to detect the type of nusantara customary makeup on the image of the bride's head by conducting a dataset training process on 1478 images or images consisting of 14 types of Nusantara customary makeup in 5000 iterations, the application built was able to obtain a value with an average accuracy of 95.20% and an average time needed to detect for 327ms (milli-seconds).


Keywords


Machine learning; Object detection; Traditional makeup; Tensorflow-lite; YOLO

Full Text:

PDF

References


Bramasto, S. 2020. TensorflowLite Pada Perangkat Bergerak Guna Prediksi Waktu Panen Pada Operasi Pertanian Vertikal. Technopex, 1-9.

Fachriyan, M., & Dharmayanti, D. 2019. Pembangunan Aplikasi Pengenalan Objek Terdekat Untuk Penyandang Tunanetra Menggunakan MLKIT Dan Text To Voice Berbasis Android.

Harahap, M., Elfrida, J., Agusman, P., Rafael, M., Abram, R., & Ardianto, K. 2019. Sistem Cerdas Pemantau Arus Lalu Lintas Dengan YOLO. Seminar Nasional Aptikom (Semanstik) 2019, 367-376.

Kanisius, A., Lapian, E., Sompie, S. R., & Manembu, P. D. 2021. You Only Look Once (YOLO) Implementation For Signature Pattern Classification. Jurnal Teknologi Informatika, 16(3), 337-346.

Karlina, O. E., & Indarti, D. 2019. Pengenalan Objek Makanan Cepat Saji Pada Video Dan Real Time WebCam Menggunakan Metode You Look Only Once (YOLO). Jurnal Ilmu Informasi Komputer, 24(3), 199-208.

Khairunnas, E., Yuniamo, M., & Zaini, A. 2021. Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO Untuk Mobile Robot. Jurnal Teknik, 10(1), 50-55.

Liunanda, J. S., Rostianingsih, S., & Purbowo, A. N. 2020. Implementasi Algoritma YOLO Pada Aplikasi Pendeteksi Senjata Tajam Di Android. Jurnal Teknik, 1-7.

Permana, A., & Budayawan, K. 2020. Aplikasi Android Pengklasifikasi Semantik Teks Menggunakan Tensorflow Lite Pada Ringkasan Karya Ilmiah. J. Vocat Tek. Elektro dan Inform, 8(4), 128-135.

Ramasari, F., Firdaus, Nita, S., & Kartika. 2021. Penggunaan Metode You Only Look Once Dalam Penentu Pindah Tanaman Cabai Besar Ternotifikasi Telegram. Elektron, 13(2), 45-52.

Ummah, A. 2020. Kajian Tata Rias Tradisional Pengantin Gaya Semandingan Di Kabupaten Tuban. 9(3), 117-123.

Wisna, J. S., Matulatan, T., & Hayaty, N. 2020. Deteksi Kendaraan Secara Real Time Menggunakan Metode YOLO Berbasis Andorid. Jurnal Sustainnable, 9(1), 8-14.




DOI: http://dx.doi.org/10.33087/jiubj.v22i3.2421

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

ADRESS JOURNAL

JURNAL ILMIAH UNIVERSITAS BATANGHARI JAMBI (JIUBJ)
Published by Lembaga Penelitian dan Pengabdian kepada Masyarakat
Adress: Jl.Slamet Ryadi, Broni-Jambi, Kec.Telanaipura, Kodepos: 36122, email: jiubj.unbari@gmail.com, Phone: 0741-670700

Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.